[4] H. R. Kiefer, J. Lindstrom, E. S. Lennox & S. J. Singer, Proc. nat. Acad. Sci. U.S. 67, 1688 (1970).

[5] F. Bergel & J.A. Stock, J. chem. Soc. 1959, 90.

- [6] D. F. Elliott & D. W. Russell, Biochem. J. 66, 49P (1957); M. Rothe & F. Kunitz, Liebigs Ann. Chem. 609, 88 (1957); M. Bodanszky & V. du Vigneaud, J. Amer. chem. Soc. 81, 5688 (1959).
- [7] R. Schwyzer & U. Ludescher, Biochemistry 7, 2514, 2519 (1968).
- [8] E. Schnabel, Liebigs Ann. Chem. 702, 188 (1967).
- [9] G. H. L. Nefkens, G. I. Tesser & R. J. F. Nivard, Rec. Trav. chim. Pays-Bas 79, 688 (1960).

145. Etude de composés d'addition d'acides de Lewis, XXXIV [1] Composés d'addition de benzoquinone-1,4 avec TiCl₄

par R. Giallonardo et Bernard-P. Susz

Institut de Chimie Physique de l'Université de Genève

(14 V 71)

Summary. The adduct 1,4-benzoquinone $\cdot \text{TiCl}_4$ has been prepared in CH_2Cl_2 solution at about -60° . Its IR, spectrum has been recorded at the same temperature. The experimental study of the vibrational frequencies has been completed by the calculation of the fundamental vibrations in the molecular plane, using *Wilson's* FG method, with slightly simplified models of 1,4-benzoquinone $\cdot \text{TiCl}_4$ (13 masses) and 1,4-benzoquinone $\cdot 2\text{TiCl}_4$ (14 masses); analysis by use of internal and symmetry coordinates. An assignment of most of the observed bands is proposed and the conclusion is reached that the complex, when solid, is (1,4-benzoquinone $\cdot \text{TiCl}_4$)_n.

The force constants F(C=O) are $9.85 \cdot 10^5$ dyne/cm for the quinone and $8.8 \cdot 10^5$ dyne/cm for the disturbed carbonyl bond of the polymerized complex in the model proposed.

At ordinary temperature in benzene solution of the components the adduct 1,4-benzoquinone- $TiCl_4$ -benzene precipitated; with the help of the models, the fundamental vibrations of its IR. spectrum have been assigned.

1. Introduction. – Les recherches sur les composés d'addition entreprises dans notre laboratoire ont porté jusqu'à présent sur une série d'acides de *Lewis* et sur des donneurs électroniques possédant un groupe carbonyle: cétones, esters, acides et chlorures d'acides, aldéhydes [1] à [5].

Il nous a paru intéressant d'étudier le comportement du groupe quinonique avec le tétrachlorure de titane. TiCl₄ a été choisi à cause de l'effet assez marqué qu'il était susceptible de provoquer sur la répartition électronique de la liaison carbonyle et sur le nombre d'onde ω (C=O) associé à la présence du groupe carbonyle. La benzoquinone-1,4, qui a fait l'objet de plusieurs études spectroscopiques infrarouges et *Raman*, a été utilisé comme base de *Lewis*.

La littérature, à notre connaissance, est très pauvre en ce qui concerne les composés d'addition de la benzoquinone-1,4 avec des acides de *Lewis. Klages* et collaborateurs [6] ont préparé (solvant: CH_2Cl_2) les composés benzoquinone-1,4 · $2SbCl_5$ et benzoquinone-1,4 · $SbCl_5$. Ce sont des solides rouges qui, à l'abri de l'humidité et au dessous de -50° , sont stables un certain temps mais qui se décomposent rapidement en quelques minutes à la température ordinaire avec dégagement de HCl et noircissement du résidu. D'après *Soumarokova* et collaborateurs [7] la benzoquinone forme en solution benzénique avec $TiCl_4$ à température ordinaire un précipité rouge foncé qui aurait la composition benzoquinone-1,4 · $TiCl_4$. Ces mêmes auteurs ont préparé dans le même solvant un complexe avec $SnCl_4$ auquel ils attribuent la composition benzoquinone-1,4 · $SnCl_4$, alors que *Meyer* [8] a isolé, dans des conditions identiques, le composé benzoquinone-1,4 · $SnCl_4$ · benzène. Le composé benzoquinone-1,4 · $Al_2Br_6 \cdot 2C_6H_6$ a été signalé par *Kohler* [9].

Aucune étude spectrophotométrique de ces complexes n'avait été faite.

2. Partie expérimentale. – 2.1. Produits utilisés. Benzoquinone-1,4, Fluka purum, resublimée sous pression réduite, F. 115°. – Chlorure de méthylène, Fluka purum, redistillé sur P_2O_5 , Eb. 38°. Benzène, Fluka, pour spectroscopie ultraviolette. – Tétrachlorure de titane, Fluka purum, Eb. 32–35°.

2.2. Préparation des composés d'addition. Toutes les manipulations ont été effectuées dans une cage à gants dont l'air a été desséché par circulation forcée à travers une tour remplie de silicagel, et par P_2O_5 contenu dans une capsule.

2.2.1. Formation du complexe de $TiCl_4$ dans le chlorure de méthylène. Nos essais ont confirmé que le composé d'addition doit être préparé et conservé à basse température et à l'abri de l'humidité.

Préparation: Une solution de benzoquinone-1,4 (BQ-1,4) dans le chlorure de méthylène (F. $-96,7^{\circ}$) est refroidie par un mélange glace sèche-éthanol (-60°). L'addition, goutte à goutte, d'une solution de TiCl₄ dans CH₂Cl₂, également refroidie ($-50 \text{ à } -60^{\circ}$), provoque l'apparition immédiate d'un précipité très fin, d'un jaune intense. Par filtration et séchage sous vide, toujours à -60° , on obtient un solide jaune d'or qu'on peut conserver à -60° à l'abri de l'humidité, mais qui se décompose rapidement à partir de -40° en dégageant du gaz chlorhydrique et en laissant un résidu brun-noir.

2.2.2. Formation du complexe de $TiCl_4$ en solution benzénique. Le complexe BQ-1,4·TiCl₄, décrit comme stable dans les conditions ordinaires, a été isolé par Soumarokova et coll. [7] à partir d'une solution benzénique. La coloration de ce complexe étant, en outre, différente du nôtre, nous avons repris l'étude du composé d'addition obtenu en solution benzénique.

Préparation: A une solution benzénique de la quinone on ajoute goutte à goutte 2 équivalents moleculaires de TiCl₄ également en solution benzénique. Le précipité rouge-brun qui apparaît inmédiatement est filtré et séché sous pression réduite et à l'abri de l'humidité. On recueille un solide rouge-brun, stable à température ordinaire.

2.3. Composition et propriétés physiques des composés étudiés (voir tableau 1).

Composés d'addition	Analyse	Analyse élémentaire								
		% C	% H	% C1	% Ti	physiques				
BQ-1,4 · TiCl ₄	Calc. Trouv.	24,17 23,76	1,343 1,50	47,61 48,63	16,08 16,4	jaune d'or déc. – 40°				
BQ-1,4 · TiCl ₄ · benzène	Calc. Trouv.	38,34 38,06	2,413 2,63	37,73 37,98	12,74 12,95	rouge-brun				

Tableau 1. Analyse élémentaire et propriétés physiques des composés d'addition obtenus

Procédés de dosages: BQ-1, $4 \cdot \text{TiCl}_4$: une prise prélevée sous atmosphère d'azote sec, à -60° , est introduite, dans la cage à gants, dans un tube taré à fermeture hermétique préalablement refroidi. Les pesées se font à la température ordinaire.

Le carbone et l'hydrogène ont été dosés¹) selon *Pregl*. Le chlore et le titane ont été dosés, dans le complexe BQ-1, $4 \cdot \text{TiCl}_4$ par gravimétrie microanalytique, et dans le complexe BQ-1, $4 \cdot \text{TiCl}_4 \cdot \text{C}_6\text{H}_6$ respectivement par potentiométrie argentométrique et par gravimétrie de TiO₂.

2.4. Spectrométrie infrarouge. Spectromètre Perkin-Elmer 521 à réseaux optiques; la quinone a été examinée en pastille de KBr; le complexe BQ-1,4 · TiCl₄ · C₆H₆, en dispersion dans le nujol ou l'hostaflon (polytrifluorochloroéthylène) les fenêtres des cellules étant en KBr ou BrCs. Le spectro-

1) Dosages exécutés par le Dr K. Eder, que nous tenons à remercier.

gramme de BQ-1, $4 \cdot \text{TiCl}_4$ a été enregistré à l'aide d'une cellule pour basses températures, refroidie par le mélange acétone-CO₂, et comportant les mêmes fenêtres.

3. Interprétation des spectres d'absorption infrarouge (figure 1).

3.1. Benzoquinone-1,4. L'attribution complète des vibrations actives en IR. de la benzoquinone-1,4 a été tentée par Anno & Sadó [10], Davies & Prichard [11]. Charney & Becker [12] se basant sur le spectre Raman de la quinone étudié par Stammreich & Sans [13] (en solution dans CCl₄) complétèrent cette attribution, tandis que Anno [14], ainsi que Deschamps et coll. [15], présentèrent une analyse en coordonnées normales

Fig. 1. Spectres infrarouges de la benzoquinone-1, 4 et de ses composés d'addition avec TiCl₄ (schémas de Kohlrausch)

des vibrations fondamentales de la benzoquinone-1,4. Le spectre Raman de la benzoquinone-1,4 solide fut enregistré par Stenman [16] et par Deschamps et coll. [15].

La présence d'une structure complexe dans la région associée à la vibration carbonyle de la benzoquinone-1,4 a été signalée par *Josien & Deschamps* [17], *Lee & Wilmshurst* [18], *Cosgrove* et coll. [19].

Anno & Sadô [10], Bagli [20], Brown [21], ont suggéré que le double maximum de la bande carbonyle (1667 et 1656 cm⁻¹) dans CS₂ pouvait être provoqué par une résonance de *Fermi* entre la vibration C=O fondamentale et une bande de combinaison.

Becker, Ziffer & Charney [22] étudièrent les spectres IR. de dérivés isotopiques de la benzoquinone-1,4. Dans les dérivés contenant ¹⁸O dans lesquels la fréquence de la vibration de valence C=O est déplacée, une seule bande apparaît, confirmant ainsi la présence d'une résonance de Fermi.

Charney & Becker [12] attribuent le doublet 1656 et 1668 cm⁻¹ (dans CCl₄) à une résonance de *Fermi* entre la vibration de valence C=O fondamentale (B₁u, 1666 cm⁻¹) et une bande de combinaison: 600 (B₃g) + 1066(B₂u) = 1666(B₁u).

Dans le spectre de la benzoquinone-1,4 solide, le double maximum de la bande carbonyle se situe à 1662–1653 cm⁻¹. En nous basant sur le spectre *Raman* décrit par *Deschamps* et coll. et sur nos résultats (tableau 8), cette bande de combinaison deviendrait 600 (B_{3g}) + 1072 (B_{2u}) = 1672 (B_{1u}). Par suite de l'anharmonicité des

vibrations réelles, cette bande de combinaison devrait apparaître à un nombre d'ondes un peu inférieur. Il est donc possible d'admettre que cette bande entre en résonance avec la vibration de valence ω (C=O) fondamentale (B_{1u}).

Un important épaulement vers 1673 cm⁻¹ (dans CCl₄) a été signalé par *Brown* [21]; *Charney & Becker* [12] proposent de l'attribuer à une bande de combinaison 794 (B_{2g}) + 882 (B_{3u}) = 1676 (B_{1u}), dans CCl₄. A l'état solide, la combinaison donnerait 796 + 892 = 1688 cm⁻¹, valeur qui nous paraît compatible avec l'expérience.

3.2. Benzoquinone-1, $4 \cdot TiCl_4$. – Vibration de valence carbonyle. Le doublet associé à la fonction C=O pour la quinone est absent. En revanche, apparaissent 2 bandes de forte intensité situées à 1630 et 1605 cm⁻¹.

Si nous considérons le composé de stoechiométrie 1:1 comme formé de molécules isolées, un seul des deux groupes carbonyle devrait être complexé, l'autre demeurant libre. La symétrie du composé d'addition ne pouvant être supérieure à C_{2v} , il devrait apparaître deux «bandes carbonyle», dont l'une, peu déplacée, resterait proche de ω (C=O) tandis que l'autre serait assez nettement abaissée.

Dans cette hypothèse, la bande située à 1605 cm⁻¹ correspondrait à la vibration de valence $\omega(C=O \rightarrow)$ complexé et 1630 cm⁻¹ à $\omega(C=O)$ libre. Cette fréquence 1630, cependant, semble bien trop déplacée pour répondre à cette attribution.

La bande 1630 cm⁻¹ pourrait également correspondre à l'épaulement situé à 1634 cm⁻¹ dans le spectre de benzoquinone-1,4 solide, épaulement signalé en solution dans CCl_4 par *Charney* & *Becker* et dont l'origine n'a pas été indiquée dans la littérature. Dans cette hypothèse, nous n'observerions qu'une valeur pour la fréquence carbonyle perturbée (1605 cm⁻¹) et il faudrait en conclure que les deux groupes carbonyle de la quinone ont été attaqués par TiCl₄.

A l'examen du spectre, nous ne pouvons toutefois écarter l'hypothèse de la correspondance de cette bande 1630 cm⁻¹ avec la fréquence carbonyle perturbée ω (C=O \rightarrow).

L'attribution exacte de ces deux bandes de très forte intensité paraît donc, pour l'instant, difficile à préciser. Puisqu'il y a certainement un abaissement de fréquence résultant de la complexation, nous pouvons cependant conclure, conformément aux résultats obtenus dans notre Institut lors de nombreuses recherches sur les composés d'addition, qu'il se forme une liaison dative entre l'atome central de l'accepteur électronique (Ti) et un ou deux des atomes d'oxygène des fonctions carbonyle de la quinone, ce que nous tenterons de mieux préciser dans la suite (v. paragraphe 4).

Autres vibrations. Le spectre du complexe indique que l'addition de $TiCl_4$ a apporté des variations dans l'ensemble du spectre de la benzoquinone-1,4.

Or, un déplacement des fréquences des vibrations fondamentales doit entraîner, si leur attribution proposée est exacte, la disparition de bandes de combinaison de la benzoquinone-1,4. On constate en effet dans le spectre du complexe l'absence des bandes 1718 cm⁻¹, 1682 cm⁻¹ et 1342 cm⁻¹ de la quinone.

La vibration de valence C=C située à 1595 cm⁻¹ dans le spectre de la benzoquinone-1,4 doit être perturbée par l'apparition de la bande de forte intensité 1605 cm^{-1} . Nous l'assignerons à l'épaulement se trouvant à 1587 cm⁻¹.

Nous ne pouvons préciser l'origine des fréquences observées dans le spectre IR. du composé d'addition car nous ne savons pas dans quel sens agissent les perturbations introduites dans le système par l'acide de *Lewis*. Les calculs qui suivent tenteront de répondre à cette question. 3.3. Benzoquinone-1, $4 \cdot TiCl_4 \cdot benzène$. La disparition de la fréquence carbonyle de la benzoquinone-1, 4 indique également dans ce complexe l'existence d'une liaison dative. La fréquence carbonyle perturbée peut être, comme précédemment, attribuée soit à la bande de forte intensité 1614 cm⁻¹ soit à celle de forte intensité 1634 cm⁻¹. Le déplacement de la fréquence carbonyle dans ce complexe est légèrement inférieur à celui constaté dans le composé benzoquinone-1, $4 \cdot TiCl_4$ ce qui, indépendamment des données de l'analyse élémentaire, confirmerait la présence d'une molécule de benzène liée dans le complexe.

Le grand nombre de bandes IR. indique que la symétrie de ce complexe est abaissée par rapport à celle du composé précédent et que ces 2 complexes sont différents.

Le spectre du benzène que nous avons enregistré à l'état liquide (entre deux plaques de BrCs) montre trois bandes de forte intensité dont les attributions sont d'après *Wilson*, *Decius* & *Cross* [23]:

1481 cm⁻¹ (1485 à l'état de vapeur): déformation CCH dans le plan,

1034 cm⁻¹ (1037 à l'état de vapeur): vibration de valence C-C;

667 cm⁻¹ (671 à l'état de vapeur): déformation CCH hors du plan.

On constate en effet dans le spectre IR. du complexe la présence de trois bandes qui n'existaient pas dans celui de benzoquinone-1,4 · TiCl₄ et dont les fréquences sont très voisines de celles du benzène: 1476, 1032 et 671 cm⁻¹.

L'épaulement situé à 1592 cm⁻¹ peut être attribué à la vibration de valence C=C de la quinone, mais un massif d'absorption relativement large nous empêche de préciser la part due au benzène dans cette région. Comme pour le composé d'addition précédent, nous ne pouvons donc pas proposer sans données supplémentaires une attribution des autres bandes.

3.4. Etude de la structure de vibration de benzoquinone-1, 4 et de ses composés d'addition à l'aide de modèles. Pour tenter d'élucider la structure de vibration de benzoquinone-1, $4 \cdot \text{TiCl}_4$ nous avons calculé sur un modèle un peu simplifié les fréquences de vibrations fondamentales dans le plan par la technique GF de Wilson.

Si l'on se base sur le nombre des bandes du spectre IR., la symétrie de ce composé ne paraît pas très différente de celle de la quinone elle-même. Nous avons donc d'abord étudié un modèle imitant une chaîne de molécules dans le cristal, soit le groupe benzoquinone-1,4 · 2TiCl₄, conservant la symétrie de la quinone, D_{2h} (figure 2). Un modèle benzoquinone-1,4 · TiCl₄ de symétrie plus basse C_{2v} et représentant un cristal formé de molécules isolées du composé fait l'objet d'un autre calcul (paragraphe 4).

4. Calcul des fréquences, des constantes de force et de la contribution à l'énergie potentielle de vibration de ces constantes, pour le benzoquinone-1,4 et ses composés d'addition avec $TiCl_4$.

4.1. Benzoquinone-1,4. Nous avons repris tout d'abord, par la méthode FG de Wilson [23], le calcul des fréquences de vibration de benzoquinone-1,4, en utilisant les dimensions et les angles de liaison donnés par Trotter [24] (groupe ponctuel D_{2h}) et les constantes de force proposées par Deschamps et coll. [15], à l'exception des constantes de force des déformation C-C-H dans le plan, admises pour une meilleure concordance avec l'expérience égales à 5,09 \cdot 10⁵ dyne/cm, après des calculs préliminaires. Nous n'avons considéré que les vibrations s'effectuant dans le plan de la molécule, soit les représentations irréductibles Ag, B₁₀, B₂₀ et B₃₀, les axes de coor-

φ ^e	0	0	0	0	-0,0700	-0,1500	0,1800	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-0,0600	0'9600
م	0	0	0	0,4570	00200	0	0	-0,1800	0	0	0	0	0	0	0	0	0	0	0	0	0	9	0,9600	-0,0600
φ	0	-0,0700	-0,1500	0	0	0	0	0,1800	0	0	0	0	0	0	0	0	0	0	0	0	-0'090'0	0'9600	0	0
ϕ_2	0,1500	0,0700	0	0	0	0	-0,1800	0	0	0	0	0	0	0	0	0	0	0	0	0	0,9600	-90600	0	0
¢,	0	0,2000	0,2500	-0,2510	-0,2000	0	0	0	0	0	0	0	0	Q	0	0	0	0	0	1,8500	0	0	0	0
` æ	-07500	- 0,1000	0	0	0,2000	0,2500	0	0	0	0	0	0	0	0	0	0	0	0	1,8500	0	0	0	0	0
0 6	0	0	0	0	-0,2800	- 0,2000	0	0	0	0	Û	0	0	0	0	0	0,4500	2,0000	0	0	0	0	0	0
c ⁱⁿ	0	0	0	-0,2000	-0,2800	0	0	0	0	0	0	0	0	0	0	00540	2,0000	0,4500	0	0	0	0	0	0
ů,	0	0	-0,44.00	- 0,1400	0	0	0	-0,3000	0	0	0	0	0	0	0,4500	2,0000	0,4500	0	0	0	0	0	0	0
ຼົ	0	- 0,2800	-0,2000	0	0	0	0	0	0	0	0	0	0	0'4500	2,0000	04500	0	0	0	0	0	0	0	0
â	- 0,2000	-0,2800	0	٥	0	0	0	0	0	0	0	0	0,4500	2,0000	0,4500	0	0	0	0	0	0	0	0	0
പ്	-0,1400	0	0	0	0	- 0,1400	-0,3000	0	0	0	0	0	2,0000	00546	0	Q	0	0	0	0	0	0	0	0
R12	0	0	0	0	0	0	0	0	0	0	0	5,0900	0	0	0	0	0	0	0	0	0	0	0	0
ц ^я 11	0	0	0	0	0	0	0	0	0	0	5,0900	0	0	0	0	0	0	0	0	0	0	0	0	0
n, 10	0	0	0	0	0	0	0	0	0	5,0900	0	0	0	0	0	0	0	0	0	0	0	0	0	0
R9	0	0	0	0	0	0	0	0	5,0900	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
a	0	opato-	0,2500	0,2500	oaqt'o-	0	0	9,8500	0	0	0	0	0	•	0	- 0,3000	0	0	0	0	0	0,1800	-0,1800	0
ہم ج	0,2500	-0,7000	0	0	- 0,7000	0,2500	9,8500	•	0	0	0	0	-0,3000	0	0	0	0	0	0	0	-0,1800	0	0	0,1800
ц.,	0,5000	oato'a	0	0,3500	00 + 2 ' 0 0	0004'4	0'1500	0	0	0	0	0	-0,1400	0	0	0	0	0007'0-	0,2500	0	0	0	0	-0,1500
2 ⁵	00±00	0,3500	00100	0,2100	6,7500	00+2'0	0006'0-	0002'0-	0	0	0	0	0	0	0	0	-0,2,800	-0,2800	0,2000	-0,2000	0	٥	00700	-0,0700
<u>د</u>	0	0010'0	0,5000	0004'4	0,2400	0,3500	0	072500	0	0	0	0	0	0	0	-0,1400	-0,2000	0	0	-92500	0	0	04580	0
ູ	0,3500	0,2100	0004'4	0,5000	ooto'o	0	0	0,2500	0	•	0	0	0	•	-0,2000	-0,440	•	0	0	0,2500	0	-04200	0	0
r: ⁶⁴	0,2100	6,7500	00170	00100	0,3500	0,0700	200£'0-	00012'0-	0	•	0	0	0	1-0,2800	-0,2800	0	0	0	007'0-0	0,2001	0,0700	-0'0J0	0	0
2	4,4000	0,2100	0,3500	0	00100	0,5000	0,2500	0	0	0	0	0	-0,140	- 0,200	0	0	0	•	-0,2500	0	0,1500	0	0	0
	e la	5	, ⁶ .	г ⁴	ي. ئ	ⁿ ₆	h'i	28	5	R ₁₀	R11	R ₁₂	D10	0, 2	D3	D.4	ی 2	°0	`•	ب هر	φ2	م	¢.	Å,
L	1.	1	1	1	1	1	1	1	1	1	1	1	<u>ن ل</u>	L	1	L	1	1		I			1	í

Tableau 2. Matrice F de la benzoquinone-1,4

données cartésiens ayant été désignés selon la notation recommandée par *Mulliken* [25]. La matrice F des constantes de force F_{kk} et d'interaction F_{kl} est donnée dans le tableau 2.

4.1.1. Analyse à l'aide des coordonnées internes. Les coordonnées internes R'_k comprennent les coordonnées de valence R_k , de déformation des angles C-C-C et C-C=C dans le plan D_k , de déformation des angles C-C=C ϕ'_k et des angles C-C-H dans le plan ϕ_k . Les notations utilisées pour les longueurs et angles de liaison et pour ces coordonnées sont données dans la figure 2.

Fig. 2. Notations utilisées pour les longueurs et angles de liaison et pour les coordonnées internes

$ \begin{split} \mathbf{r}_7 &= \mathbf{r}_8 = \mathbf{r} (\mathrm{C}{=}\mathrm{O}) = 1,222 \mathrm{A} \\ \mathbf{r}_1 &= \mathbf{r}_3 = \mathbf{r}_4 = \mathbf{r}_6 = \mathbf{r} (\mathrm{C}{-}\mathrm{C}) = 1,477 \mathrm{A} \\ \mathbf{r}_2 &= \mathbf{r}_5 = \mathbf{r} (\mathrm{C}{-}\mathrm{C}) = 1,322 \mathrm{A} \\ \mathbf{r}_9 &= \mathbf{r}_{10} = \mathbf{r}_{11} = \mathbf{r}_{12} = \mathbf{r} (\mathrm{CH}) = 1,084 \mathrm{A} \end{split} $	$2\alpha = \text{angle CCC}$ $\beta = \text{angle CCC}$ $\rho = 1/r (CC) = 0$	$= 117^{\circ} 48'$ = 121° 6' ,677 Λ^{-1}
Coordonnées de déformation des angles :	$\begin{array}{l} \phi_1{}' = \frac{1}{2} \left({\rm D}_{13} - {\rm D}_7 \right) \\ \phi_2 = \frac{1}{2} \left({\rm D}_{15} - {\rm D}_9 \right) \\ \phi_5 = \frac{1}{2} \left({\rm D}_{17} - {\rm D}_{11} \right) \end{array}$	$\begin{array}{l} \phi_4{}' = \frac{1}{2} \left(\mathrm{D}_{14} - \mathrm{D}_8 \right) \\ \phi_3 \ = \frac{1}{2} \left(\mathrm{D}_{10} - \mathrm{D}_{16} \right) \\ \phi_6 \ = \frac{1}{2} \left(\mathrm{D}_{12} - \mathrm{D}_{18} \right) \end{array}$

Afin que le lecteur puisse mieux se rendre compte de la signification des fréquences calculées vis-à-vis des déplacements intramoléculaires, nous donnons également les valeurs

$$V_{kn} = \sum\limits_{l} F_{kl} \, R_{ln}^{'} \, R_{kn}^{'} \, / \sum\limits_{k=1}^{r} \sum\limits_{l} F_{kl} \, R_{ln}^{'} \, R_{kn}^{'}$$
 ,

soit les contributions des coordonnées R'_k à l'énergie potentielle $V_n = \sum_k V_{kn} = 1$ de chaque fréquence ω_n . Le calcul donne 24 valeurs de ω_n , dont trois nulles par suite des redondances [26] suivantes:

Il restera 2N - 3 = 21 vibrations fondamentales dans le plan de la molécule.

Le tableau 3 donne l'ensemble des valeurs ainsi calculées.

La fréquence 1653 cm⁻¹ (B_{1u}, dénommée dans la suite «fréquence carbonyle active en IR.» est due pour 79% de l'énergie potentielle aux déplacements des atomes C et O dans la direction de la valence dépendant des constantes de force intéressant les liaisons C=O, et pour 12% aux déplacements de valence C-C. La contribution des liaisons C=O à la fréquence 1660 cm⁻¹ (A_g) est légèrement plus faible, 73%, alors que

S _t w _n	3061	1705	1660	1120	770	444	0	$\sum_{n} V_{tn}$
$S_1 = \frac{1}{2}(R_1 + R_3 + R_4 + R_6)$	0,0014	0,1608	0,0230	0,0252	0,7840	0,0055	_	0,9999
$S_2 = 1/\sqrt{2} (R_2 + R_5)$	0,0078	0,3968	0,1830	0,1838	0,0600	0,1684		0,9998
$S_3 = 1/\sqrt{2} (R_7 + R_8)$	0,0001	0,0910	0,7272	0,0046	0,0587	0,1183	-	0,9999
$S_4 = \frac{1}{2}(R_9 + R_{10} + R_{11} + R_{12})$	0,9872	0,0046	0,0028	0,0005	0,0047	0,0001		0,9999
$S_5 = 1/\sqrt{2} (D_1 + D_4)$	0,0016	0,0974	0,0092	0,0165	0,0445	0,4983	0,3324	0,9999
$\mathbf{S_6} = \tfrac{1}{2} \left(\mathbf{D_2} + \mathbf{D_3} + \mathbf{D_5} + \mathbf{D_6} \right)$	0,0012	0,0592	0,0031	0,0110	0,0484	0,2093	0,6676	0,9998
$S_7 = \frac{1}{2}(\phi_2 - \phi_3 + \phi_5 - \phi_6)$	0,0005	0,1901	0,0516	0,7582	- 0,0005	-	-	0,9999
$\sum_{t} V_{tn}$	0,9998	0,9999	0,9999	0,9998	0,9998	0,9999	1,0000	6,9991

Tableau 4. Représentation A_g : contributions à l'énergie potentielle V_{tn} pour chaque fréquence

Tableau 5. Représentation B_{1u} : contributions à l'énergie potentielle V_{tn} pour chaque fréquence

ω _n S _t	3059	1653	1344	951	707	0	$\sum_{n}^{\Sigma} V_{tn}$
$S_1 = \frac{1}{2}(R_1 - R_3 - R_4 + R_6)$	0,0020	0,1193	0,1361	0,2697	0,2406	0,2322	0,9999
$S_3 = 1/\sqrt{2} (R_7 - R_8)$	_	0,7917	0,0497	0,0019	0,1567	_	1,0000
$S_4 = \frac{1}{2}(R_9 - R_{10} - R_{11} + R_{12})$	0,9902	_	0,0030	0,0056	0,0010		0,9998
$S_5 = 1/\sqrt{2} (D_1 - D_4)$	0,0003	0,0786	-0,0015	-0,0073	0,3859	0,5439	0,9999
$S_6 = \frac{1}{2}(D_2 - D_3 - D_5 + D_6)$	0,0071	0,0029	0,1011	0,4906	0,1742	0,2238	0,9997
$S_7 = \frac{1}{2}(\phi_2 + \phi_3 - \phi_5 - \phi_6)$	0,0003	0,0074	0,7115	0,2394	0,0414	-	1,0000
$\sum_{t} V_{tn}$	0,9999	0,9999	0,9999	0,9999	0,9998	0,9999	5,9993

Tableau 6. Représentation B_{2u} : contributions à l'énergie potentielle V_{tn} pour chaque fréquence

S _t w _n	3058,7	1595	1307	1066	402	0	$\sum_{n} V_{tn}$
$S_1 = \frac{1}{2}(R_1 + R_3 - R_4 - R_6)$	0,0016	0,0775	0,6571	0,0314	0,1457	0,0867	1,0000
$S_2 = 1/\sqrt{2} (R_2 - R_5)$	0,0061	0,5631	0,0044	0,2810	0,0288	0,1165	0,9999
$S_4 = \frac{1}{2}(R_9 + R_{10} - R_{11} - R_{12})$	0,9896	0,0048	0,0028	0,0024	0,0003	_	0,9999
$S_6 = \frac{1}{2} (D_2 + D_3 - D_5 - D_6)$	0,0018	0,0341	0,0619	0,0807	0,0246	0,7967	0,9998
$S_7 = \frac{1}{2}(\phi_2 - \phi_3 - \phi_5 + \phi_6)$	0,0005	0,3172	0,1321	0,5503	-0,0002	_	0,9999
$S_8 = 1/\sqrt{2} (\phi'_1 - \phi'_4)$	0,0003	0,0032	0,1416	0,0541	0,8007		0,99999
$\sum_{t} V_{tn}$	0,9999	0,9999	0,9999	0,9999	0,9999	0,99999	5,9994

4	
÷.	
5	
n	
20	
11	
Ъ	à
20	5
н	ŝ
p_{ℓ}	ł
a	+
6	
à	Ś
5	ş
3	- 2
6	7
24.6	ċ
n	- 2
ég	2
\$	1
ê.	
dr	1
10	+
0	ş
11	6
01	\$
\$	
`o'	4
it	
Ur.	- 5
1.1	
-5	ć
0	*
72 É	š
2	7
20	÷
	2
lle	ġ
6	Ē
327	į
ie.	è
09	š
0	
26.	1
345	6
'n	Ē
16	ŝ
ė	Ş
a	÷
kn	8
\geq	Ś
3	ŝ
011	1
11	ġ
24	ġ
22	
124	5
õ	ŝ
C	فر ا
3.	F
Π	
33.	
οle	
at	
ĹН	

4
à
-
Ĕ
er
Ъ
÷2.
ée
É
Б
Ð,
б
8
7
÷.
le
Ē.
ŝt
Ë
8
ď
<u>ē</u>
Ŧ
÷Ë
a
2
Ja
÷
5
÷
e
യ
н.
ര
Ľa
u l'a
ou l'a
on ou l'a
ison ou l'a
iaison ou l'a
liaison ou l'a
la liaison ou l'a
ie la liaison ou l'a
nne la liaison ou l'a
onne la liaison ou l'a
olonne la liaison ou l'a
e colonne la liaison ou l'a
re colonne la liaison ou l'a
iière colonne la liaison ou l'a
mière colonne la liaison ou l'a
remière colonne la liaison ou l'a
première colonne la liaison ou l'a
la première colonne la liaison ou l'a
is la première colonne la liaison ou l'a
ans la première colonne la liaison ou l'a
Dans la première colonne la liaison ou l'a

1	1~	1			~		5		, 1	,	, 1	, 1	,, I	5	1	-	~		. 1	90.					00
	0, 997.3	1,0081	0,9905	0,995	1,007	0,9912	0, 199	0,9991	0,9975	0,9995	0,9975	0,9995	0,9967	1,067	1,017	0,921	0, 9921	4,0091	0,9958	0,999	146'0	9666'0	4666'0	0, 1994	23,789
0	0110	90319	0,0023	0,0725	0,0335	0,002.0	ţ	—	ł		1	1	0,0830	0,1997	0,0188	0,4467	0,2826	90494	ļ	-	1	I	1	-	0, 7714
, c	0,0001	90288	00362	ŧ	0,0136	0,0255	I	-		1	۲	1	1,0071	0,2301	0,4245	0,2440	44000	0,008.2	1	I	1	Ι			5646'a
0	0,0063	0,0065	1-250%	6,00,33	0,0428	8550%				1	1	1	0,3388	0,0604	6000'0-	-0,0006	0,1273	0,3739	1		1		ļ		5,999F
402	0,0363	4410'0	0,0363	0,0363	0,0444	0,0363	1			1	1	1	1	0,0061	13000		1900'0	1900'0	0,4005	20040			1	1	4466
444	0,0014	24800	41-00'0	0,0014	0,0842	0,0014	e,0591	A0591	1	I	1	1	16420	0,0523	0,0523	0,2491	0,0523	0,0523			1		1	1	0,1796
517	0.0564		0,0564	0,0544	1	0,0564		١		1		1	1	0023	0,0023	1	0,0023	0,0023	6,3724	0,3727	9,00%	6400'0	0,004.9	64000	6,9978
\$C3	14500		4+500	1,0547		4 <i>0547</i>			0,0005	5000'0	<i>6,0005</i>	0,0005	-	41641	0,464.1		0,4641	0,4641	¢0579	0,0579	31-6010	9100'0	0,0016	5,0016	1646'0
202	0,0602	ļ	0,0602	20900		2090'0	48.200	0,070h	20002	0,0002	0,000	B,0002	0,1930	90435	0,04:35	0,1930	0,0435	e,0435			50100	50+0'0	0,0103	20103	9616'0
027	0.1560	0,0300	0,4960	0,4960	0'0300	0,1960	0,0293	0,0293.	0,00+2	0,0012	0,001L	0,0012	0,022.2	9,01.24	G0121	0,0111	0,0121	0,0121	Ι		-0001	- 0, 800 t	-0,001	10000-	0,4998
351	0.0674		4±90'a	44.70'0	I	4270'0	6'000'0	6.000'0	44.00%	41-00'0	0,001h	41-00'0	95000	0,1227	0,1227	-0,0036	9,1227	9,1227	1		0,0598	0,0598	0,0598	8,650'0	0, 1998
1066	0,0079	0,44.05	0,0079	6200'0	0,1405	0,00,79	Į	1	0,0006	0,0006	90006	0'000 G	1	0,0202	0,0202	-	70700	0,0102	0,0270	0,0270	0,1375	0,1375	0,1375	Stero	0,9998
1120	0.0063	0,0913	0,0063	0,0063	6160'0	0,0063	5,0023	\$ 100 2	0,000 1	0,8001	1000'0	1000'0	2800'0	0,0028	0,0023	0,0082	2006	8 100'0			0,1895	0,1895	0,1895	56810	0,7996
1222	0.0254	1	0,0254	2520'0	1	4570%	1	1	70000	8,0002	2000'0	2000'0		0,0119	0,0419	1	6+100	6440'0	£740'0	1240'0	01910	01910	41910	0,1910	0,9974
1307	0.4643	0,0022	0,4643	0,1643	2700'0	54940			±0000	10001	10005	tooot		Q:04 55	0,0155	Ι	00155	0,0155	0,0706	0,0706	0,0330	0,0330	0,0330	0,0330	9646'0
13.44	0.0340		04200	0450'0	.	0,0340	2470'2	\$470'0	± 000 °	10000	20000	±000'0	-0,000	6,0253	402.53	-0007	00253	0,0153			62240	0,1779	6446	61110	8646'0
1397	55140		0,425	0,4129		6211-0			22002	27000	12000	2700'0	1	600033	0,0693	ł	a,0693	0,0693	0,0264	4970'0	\$7500	6250'0	0,052.3	0,0523	9666'0
1595	0.0193	0,2845	Q0493	0,0193	0,2845	0,0493			0,0012	0,0012	0,0042	0,0012		0,0085	0,0025		0,0085	0,0085	0,0016	0,0016	26±0'0	\$620'0	26700	0,0793	41.69%
1653	29200		0,0298	0,0298		8620'0	0,3958	83958	1		1	1	562.0,0	£000'0	0,0007	0,0393	€ 000 f	£000'o	1		8+00'0	0,0018	0,0018	8+00'0	4,9994
1660	0.0057	4160'0	0,0057	0,0057	4160'0	0, bust	0,3636	0,3636	2000,0	£040'0	£000'0	£000'0	94000	00006	8000'0	9400%	80008	\$,0008	1		631000	0,0129	67100	63400	0,9996
1705	0.0402	4861.0	70400	2040.0	0,1984	20405	9,04,54	45400	0,0011	0.0011	1400'0	1100'0	t&tra'o	0,0148	841-0'0	£840'0	0,0148	0,0148		1	5£40'0	Strab	5640'0	58400	4666'0
3358	10000	0:0030	0.0004	1000'0	0500'0	100012	1	1	45438	44.47	46420	42436		10000	4000'0		4000'0	4000'0	0,000.2	0,00.02.	1000'0	1-000'0	10000	10000	9666
3053	0.0005		0000	00002		0,0005			62476	0,2475	54470	SENT'O	2,000,0	0,00.18	0,0018	20000	81000	8100'0	ſ	ł	1	1	i	1	9666'0
3061	0,0005		0,0005	0,0005		5000/0		!	2470	024210	02420	02420		0,0013	\$700'0		0,0023	6,0013	0,000,2	2000'0			1		9666'0
3061	0.003	0,0039	£000'0	0,0003	0,0039	6,0003		-1	0,2468	0,2468	0,2468	0,2468	0,000	0,0003	50000	80000	0,000 3	0,0003	1		1000'9	0'0001	0,0001	0,0001	4666,0
3/2	A A	- 	2	a.	5	3°6	5.1	2 ⁸ 2	64	. ^R 10	a II	^в 12	I ^C	2 ²	ຕິ	°,	55	0 ⁰	` ⊷	¢,	¢2	¢.	÷,	ా	r, r:u
4	2-2	0=0	0 - 0	ပ ပ	0=0 0=0	ပု ပ	0=0 U	0=0 U=0	H-U	Ŧ	Ŧ	H-S	Υ Υ	Ч Ч	9 5 -	0-0 -0	2-2-0	5-0-0	0=0=0	0#0-0	H-0-1	H-O-C	H-O-C	H 0-	
	L	1		1		L	L	L	L	I	۱	L.,	5	2	2	<u> </u>	2	<u> </u>	2	L	2	2		2	

celles des liaisons C=C est de 18% et celle de l'ensemble du noyau aromatique, de 20% environ.

4.1.2. Analyse à l'aide des coordonnées de symétrie. Les calculs précédents ne permettent pas de distribuer les fréquences calculées ω_n entre les représentations irréductibles. Il a paru intéressant de reprendre ces calculs en coordonnées de symétrie S_t , par représentation irréductible, les contributions à l'énergie potentielle étant alors celles des R'_k qui sont liés par la symétrie moléculaire. Les tableaux 4, 5, 6 et 7 donnent les nombres d'ondes ω_n ainsi que les contributions V_{tn} , normées à l'unité, des coordonnées S_t :

$$V_{tn} = \sum_{u} F_{tu} S_{un} S_{tn} / \sum_{t} \sum_{u} F_{tu} S_{un} S_{tn}$$

S _t ω_n	3061	1397	1221	603	517	$\sum_{\mathbf{n}} V_{\mathbf{tn}}$
$\frac{1}{S_{1} = \frac{1}{2}(R_{1} - R_{2} + R_{4} - R_{6})}$	0,0022	0,4515	0,1017	0,2190	0,2256	1,0000
$S_{4} = \frac{1}{2}(R_{9} - R_{19} + R_{11} - R_{19})$	0,9879	0,0090	0,0008	0,0021	_	0,9998
$S_{a} = \frac{1}{2} (D_{2} - D_{2} + D_{5} - D_{6})^{127}$	0,0091	0,2773	0,0478	0,6566	0,0092	1,0000
$S_{2} = \frac{1}{2}(\phi_{2} + \phi_{2} + \phi_{3} + \phi_{4})$	0,0002	0,2093	0,7642	0,0064	0,0198	0,9999
$S_8 = 1/\sqrt{2} (\phi'_1 + \phi'_4)$	0,0005	0,0529	0,0853	0,1158	0,7453	0,9998
ΣV_{tn}	0, 9 999	1,0000	0,9998	0,9999	0,9999	4,9995

Tableau 7. Représentation B_{3g} : contributions à l'énergie potentielle V_{tn} pour chaque fréquence

Le tableau 8 résume les résultats obtenus par le calcul et la comparaison avec les spectres IR. et *Raman* observés.

4.2. Benzoquinone-1, $4 \cdot 2 \operatorname{TiCl}_4$. Pour simplifier le modèle du complexe BQ-1, $4 \cdot 2 \operatorname{TiCl}_4$, nous avons supposé TiCl_4 réduit au point Ti. Nous situons ces atomes de titane dans le plan de symétrie σ^x et sur l'axe de symétrie C_2^z pour conserver la symétrie D_{2h} selon la remarque faite au paragraphe 3.4 (fig. 3).

Nous avons également utilisé la masse du titane au lieu de la masse de TiCl₄. En effet, *Cassimatis* [3], lors des calculs des fréquences de vibration effectués sur le donneur CH₃COCl et l'accepteur TiCl₄, a constaté que l'introduction de la masse Ti à la place du groupe TiCl₄ ne modifiait que peu la valeur ω (C=O \rightarrow).

Pour les nouvelles longueurs de liaison et constantes de force nous avons adopté les valeurs déjà utilisées par Cassimatis [3], Petitpierre [4] et Weber [5]:

observé		calculé										
IR.	Raman	Deschamps	ce travail		Représen-	Attribu-						
ce travail	Deschamps et al. [15]	et al.	Coord. internes	Coord. symétrie	tation irréductible	tion appro- ximative						
_	3059	3063	3061	3061	– Ag	ν _{CH}						
_	3059	3062	3061	3061	B_{3g}	v _{CH}						
3063	_	3061	3059	3059	B_{1u}	$\nu_{\rm CH}$						
3063	_	3060	3058	3058	B_{2u}	ν _{CH}						
_	1690 f	1708	1705	1705	A_{g}	$\nu_{\rm C=C}$						
-	$1667\mathrm{F}$	1663	1660	1660	A_{g}	$v_{\mathbf{C}=0}$						
$1662 \\ 1653 $ R.1	F. –	1657	1653	1653	B_{1^u}	ν _{C=0}						
1595	_	1598	1595	1595	B_{2u}	$\nu_{\rm C=C}$						
	1392 m	1400	1397	1397	B_{3g}	$v_{\rm C-C}$						
1367	-	1359	1344	1344	B ₁ u	β_{CH}						
1307	_	1310	1307	1307	B_{2u}	$v_{\rm C-C}$						
-	1226 e	1226	1222	1221	B _{3g}	β_{CH}						
_	$1147\mathrm{F}$	1127	1120	1120	A_{g}	β_{CH}						
1072	-	1070	1066	1066	B_{2u}	β_{CH}						
942		949	951	951	B ₁ u	déformation du squelette						
	77 0 m	772	770	770	$\mathbf{A}_{\mathbf{g}}$	$\nu_{\rm C-C}$						
741	_	708	707	707	B ₁ u	déformation du squelette						
-	600 f	604	603	603	B_{3g}	déformation du squelette						
_	476e	517	517	517	B_{3g}	$\beta_{c=0}$						
-	443 F	445	444	444	A_{g}	déformation du squelette						
412	-	402	402	402	B_{2u}	$\beta_{c=0}$						

Tableau 8. Nombres d'ondes observés et calculés pour la benzoquinone-1,4(vibrations situées dans le plan de la molécule)

R.F.: résonance de Fermi

 $r_{13} = r_{14} = r_{0-Ti} = 1,90 \text{ Å},$

 $\eta_1 = \eta_2 = \text{angle C-O-Ti} = 180^\circ$,

constante de force de la liaison O-Ti:2,75 \cdot 10⁵ dyne/cm,

constante de force de la vibration de déformation de l'angle C–O–Ti:0,60 \cdot 10⁻¹¹ erg.

Le choix des coordonnées internes est le même que pour la quinone (paragraphe 4.1.1) avec en plus:

coordonnées de valence O-Ti:

 $R'_{13} = R_{13} = \Delta r_{13}; R'_{14} = R_{14} = \Delta r_{14};$

coordonnées de déformation de l'angle C-O-Ti:

 $\mathbf{R}_{\mathbf{15}}^{'}=\mathbf{H}_{\mathbf{1}}=\varDelta\eta_{\mathbf{1}},\quad \mathbf{R}_{\mathbf{16}}^{'}=\mathbf{H}_{\mathbf{2}}=\varDelta\eta_{\mathbf{2}}.$

4.2.1. Fréquences fondamentales calculées. Nous faisons varier les constantes de force $F_{7,7} = F_{8,8} = F(C=O)$ de la matrice F du modèle de leur valeur 9,85 · 10⁵ dyne/ cm pour benzoquinone-1,4 jusqu'à obtenir un nombre d'ondes proche de celui de la fréquence «carbonyle perturbée» $\omega(C=O \rightarrow)$ observée pour le composé d'addition; dans le tableau 9, nous ne considérons que la fréquence carbonyle appartenant à la représentation B_{1u} , active en IR.

Tableau 9. Variation de la fréquence carbonyle perturbée en fonction de la constante de force F (C=O→)

Constante de force $F(C=O\rightarrow)$	9,15	9,1	9,0	8,8	8,75	(10 ⁵ dyne/cm)
Fréquence carbonyle calculée	1631	1627	1620	1605	1602	(cm-1)

Dans le spectre IR. du composé d'addition deux bandes apparaissent, à 1630 et à 1605 cm⁻¹. En ajustant la constante de force d'après 1630 cm⁻¹, $F(C=O \rightarrow)$ devient égal à 9,15 · 10⁵ dyne/cm; d'après 1605, on obtient 8,8 · 10⁵. Cette variation de F(C=O) n'entraîne que de faibles variations des autres fréquences calculées (tableau 10).

Afin de choisir la constante de force paraissant le mieux convenir au composé d'addition étudié ici, nous avons comparé le résultat de nos calculs avec les résultats obtenus par *Cassimatis* [3] pour les composés acétone· TiCl₄ ($\Delta F(C=O) = F(C=O \rightarrow) - F(C=O) = -1,69 \cdot 10^5$) et chlorure d'acétyle · TiCl₄ ($\Delta F(C=O) = -2,70 \cdot 10^5$), par *Petitpierre & Susz* [4] pour acide benzoïque · TiCl₄ ($\Delta F(C=O) = -3,26 \cdot 10^5$) et par *Susz & Weber* [5] pour acétaldéhyde · TiCl₄ ($\Delta F = -2,03 \cdot 10^5$ dyne/cm).

La valeur 9,15 · 10⁵ dyne/cm, pour laquelle ΔF ne vaut que $-0.7 \cdot 10^5$, nous paraît donc par comparaison trop faible et nous adopterons $F(C=O \rightarrow) = 8.8 \cdot 10^5$ dyne/cm $(\Delta F = -1.5 \cdot 10^5)$, ce qui conduit à considérer le nombre d'onde 1605 cm⁻¹ comme celui de la fréquence «carbonyle perturbée» active en IR. (B_{1u}).

Les contributions V_{tn} de l'énergie potentielle V_n obtenues à l'aide des coordonnées de symétrie ont été calculées mais ne sont pas indiquées ici. De ces calculs proviennent les représentations irréductibles indiquées.

Le tableau 10 donne les nombres d'ondes ω_n calculés à partir de la constante de force $F(C=O \rightarrow) = 8.8 \cdot 10^5$ dyne/cm, ainsi que les contributions à l'énergie potentielle $V_{\rm kn}$ des coordonnées internes $R'_{\rm k}$.

Le tableau 10 indique que pour la fréquence carbonyle antisymétrique (B_{1u}) la contribution des déplacements de valence C=O a augmenté de 6% par rapport à la quinone de départ, tandis que celle des déplacements C=C n'est plus que de 3% et celle de l'ensemble du cycle de 11%. Pour 1605 cm⁻¹, la fréquence carbonyle symétrique (A_g) , la contribution C=O est abaissé d'environ 4%, alors que celles des liaisons C-C demeurent pratiquement inchangées.

Pour ce qui concerne les fréquences actives en IR. $(B_{1u} \text{ et } B_{2u})$, l'addition de deux molécules d'accepteur A a les effets suivants.

Les fréquences des vibrations de valence C-H (3059 cm⁻¹), de déformation C-H (1347 cm⁻¹ et 1069 cm⁻¹), de valence C=C (1595 cm⁻¹) et de valence C-C (951 cm⁻¹) ne sont que très peu perturbées. Pour chacune de ces fréquences, les contributions à l'énergie potentielle ne varient que peu par rapport à celles de la benzoquinone-1,4.

En revanche, la vibration de valence C-C située à 1307 cm⁻¹ dans le spectre de la benzoquinone-1,4 subit un déplacement de 21 cm⁻¹ vers les plus grands nombres d'onde. Une augmentation de 93 cm⁻¹ est à noter pour la fréquence 707 cm⁻¹ de la

14
iC.
E
0
4
-1
ne
ис
1111
505
n
q
de
E.
3
nci
me
éq
Ł
эn
aq
ch
17
100
**
ité
ur
1,1
à
ée
MA
no
e,
ette
tti.
ten
DO.
18
ne
2.1
10
2
V.K.
S
ис
tti.
ibi
111
0%
0
ť0.
u]
ea
q
Та
-

1412

N Ra	1,0104	445610	2443	1,0143	0,9619	0,9755	8565'0	0,999.8	8 666 6	0,9998	9,999 8	8 6 6 6 4	1,0998	0,8702	476£'0	1,1724	1,1569	1,0136	1666'0	£ 666'0	0,9998	0,999.8	0,9998	0,9998	6665 '0	0,9995	0,9999	0,9999
c	\$640%	- 1	1,0433	12554	6000'	48600	1	1	1	I	1	1	9,0228	0,0053	0,12.15	49140	0,1861	10000		1	Ι	1	ļ	ł	ļ	1		!
c	1670	\$200	1900	0220	Ī	1910	ł	1	T	1	1	1	3948	72827	3,0676	6000'0-	0,0157	0,1589	1	1	I	1	I	Ι	١	1	1	
ç	0115 0	2,0103	2005	6910	4610'	6 4100		1	1	1		1	1,0605	94000	10157	34510	SHE	3,2H2	1	1		1		1	١	1	1	
30	0 fE00	3,00.38	037 0	0,0037 0	1,0038 0	0 £E00'a	1	1	I	l	I	1		10000	20007		0,600 F	1 2000'0	0,2035	02035	1	1	ł	1	1	1	FE82,0	£8876
150	togeto		10000	4000'0-		40000	1		ł	l	ł	1	1	0406'0	0400'0	1	0,0040	0'00+0	0,H23	e/H/3	0,0004	0,0004	0,0004	0,0004	1	}	9.34.96	96460
203	. 9900%	1940	- 9909'	9900'	9,0461	A066	\$,0893	6680%	Ι	1	1	1	0,1142	£170'0	f120/s	2411'0	¢,0217	£170'0	1	1	1	1		1	0,1936	0,1936	1	1
367	8410%		8410'4	8 + 10'	1	8410'0	2420'	CH40'	1				5/40'0	££00'0	£200'6	6140'	0,0073	Etao'o	1		2100	1,0012	2100%	2100%	1455,	13371	1	
519	0422 0	6110	0422	10422 0	6110'0	,0422 (1	10001	1000%	10001	1000%	Ĩ	24001	7400'0		2400'	2±00'o	1,1934	1034			ľ			1	7,1957	,r957
553	3,112.0	-0	0,1112 0	0,1112		9,1112 6	I	1	20000	2000'0	70000	2000'0	1	0,0552 (q.0552 (0,0552	0,0552	9,1324	9,1324 0	6100%	61000	6100%	6100'0	1	I	3,03.06 (0306
613	28/01	1233	0,0185	0,0185	670'0	3,0185	1	1	0,000	2000/0	3000's	7000'0	0/536	0,0388	1,0388	9/1536	9,0388	6,0388	1	1	1	ł	1		2080	2080	1	
656	10038	_ <u>_</u> Gr	0,0038	85004	1	1,0038	1	1	4000'	4000	1000'	4000	Ī	31.16	9/1116		o,1176 (91110	1509	1509	0,0060	0900'	09 00'	0900	-	-9-	1054	1054
300	,0420		1,0420	0740'0		1,0420	9258	25201	5000'0	2,0003	10003	\$000'0	61213	20406	20402	0,1513	20405	2040'0			1010'0	1010'0	10101	0 1010'	3,1375	1375	- 6	
303	14041	4150	1704 1	10 to	1150'	+0110	5070'0	5020't	0,0010	6,00 la	0100'0	0100'0	5700'0	0,0036	9,0036	0,0025	9,0036	,0036	1	ł	10000	1000'0	10001	0,000/	esto,	6510		1
951	9,0688		88900	0,0688		0,0688	01000	0100	4100'0	4100%	41000	4100%	stoot-	10210	12210	540010	01201	9,12.01	1	1	1190%	1190'	1190%	- 1190%	0,0005 G	50000		1
1069	2400	10410	1 £400	14000	10410	1001			5000%	5000	5000'	5000'		,0183	(810'0		5910'0	10183	HS70'	4520	07410	1420	1420	, H20			45001	10034
1211	6900	4880	e0 69 6	0069 4	4880	0063	1700	1700	1000'	1000	1000	10001	1800	0018 0	3700	7800'	9700	00280			1900	1960	1900	,1900	11 00'0	11001		
1230	0 2610	6	0/25 0	2510		01250		0	1000	0001	1000'	1000		0.6±00'	0 6±ad		9,4079	0079 C	42402	10424	2846r	1978 0	8461	8461	1	1	4£00'0	1004
1323	1576 9	5003	1576 0	1576 9	6100/0	1,15760		1	0000 j	3,000F	7,800F	3,000F		0,0157 0	0157 C		0,015F (0,0157 Q	<i>p155</i> 9 (0,0759	0,0288 L	9,0288	0,02.884	3870'0	1	I	1410'0	14100
1347	0351 0	ļ	,0351 0	,0351	1	10351	2470	1420	2000'	1000	(000)	tooot	0,0001	14200	1470'0	10000	1420'0	1470%			25410	0,IF52	0,H52	25410	0,0051	1500%		1
14001	1156 0		11156 0),1156 0		9,1156			10023	0023	1023	5700'0		0690'1	3,0690	1	0690'0	0,0690	\$0316	9150%	0,0438	9,0438	10438	9,043.8		1	0400'0	0400'
1595	1 + 610'0	2182	£6/0'	1610'	9,2815	0,0157		1	3100t	1,0012 6	210012	2/00/2	1	18000	9,0084	1	9,0084	0,0084	210015	0,0015	1610'0	16£00	1640	16:00'0		I	1	1
1605	0,0007	!	10507	9,0307	1	1,0307	1450	0,3741		-1		1	10392	90002	20005	2650,0	\$0005	20005		1	0,002.2	10072	2700'0	2700/2	0,0138	0,0198	1	I
1620	1610'0	0,0165	1510'0	1610'0	0,0169	1610'0	0,3937	16650	0,0002	0,000	7000'0	0,0002	0,0/85	2400'0	£400'9	9,0185	£400'a	\$400't		1	8000'0	9,000 8 (3000 8	80000	21201	0,0212	1	
1699	18700	6597'0	0,0281	0,02.81	0.2.699	0,0284	-0,0055	9005	0,0016	0,0016	910010	0,0016	10354	0,011	tito'e	0,0354	1110'0	1110'0	!	Ι	2650'0	,0592	2650%	0,0592 (,000 (1000	1	1
3059	4000'0	16000	40000	40000	16000	40000		Ī	42420	4240	4±42'0	42470		4000%	10000	1	4000'0	4000'0	2000's	0,000,2	10001	10001	10000	10000		1	1	1
3059	3,0005		20005	5000'0	Ī	0,0005		1	92420	0,2476	92420	0,2476	0,0002	£F00'p	£100'0	20002	£1000	£1000	1		1		1			1	1	
3061	0,005	1	0,0005	0,0005		2000/0	1	1	06420	0,2470	04770	ofHI o	1	5200%	0,0023	1	0,0023	\$200'0	0,000,0	0,0002	1		1	1	1	t	1	1
3061	0,000	0,0039	0,0003	50000	6500'0	0,0003		1	0,2468	0,2468	0,2468	0,2468	0,0008	g <i>0003</i>	9,0003	0,0008	E0002	0,0003	I	1	0000	90002	90002	2000/0		1		
3/2	e. T	ຂີ່	e	er."	. ^ж 5	м. 9	R7	R,	¢.6	0 ^{[2}	⁸ 11	R ₁₂	u,	D2	ũ	DA	°2	9 ⁰	` @"	, ¢⊥	\$ 2	- 6 -	.	•	R13	R14	н, ц	нz

Helvetica Chimica Acta - Vol. 54, Fasc. 5 (1971) - Nr. 145

benzoquinone-1,4 ainsi que l'apparition d'une forte contribution (27%) des vibrations des liaisons O-Ti.

La fréquence 402 cm⁻¹ attribuée aux mouvements de déformation C=O dans le plan pour la benzoquinone-1,4 subit une augmentation de 117 cm⁻¹. Les principales contributions pour cette nouvelle fréquence sont les mouvements de déformation C=O (38%) et des angles C-O-Ti (39%).

On note également l'apparition de 2 fréquences actives en IR.:

l'une, calculée à 367 cm⁻¹, est attribuée aux vibrations de valence des liaisons O-Ti (67% de l'énergie potentielle). Les vibrations des liaisons C=O interviennent également (15%),

l'autre, 80 cm⁻¹, est liée aux mouvements de déformation dans le plan des angles C-O-Ti (57%). Cette fréquence, très basse, se trouve hors de la limite de détection de notre spectrophotomètre.

Dans le tableau 13 nous comparons les fréquences obtenues pour ce modèle à l'aide des coordonnées internes et des coordonnées de symétrie avec celles de la benzoquinone-1,4.

4.3. Benzoquinone-1, $4 \cdot TiCl_4$. Le modèle adopté suppose que l'on a une molécule de benzoquinone-1, 4 associée à une seule molécule d'acide de *Lewis*, la molécule complexe ainsi formée conservant son individualité dans le cristal.

Modèle: dimensions et coordonnées internes. Nous supposerons, comme précédemment, que l'acide de Lewis est située dans le plan de symétrie σ^x et sur l'axe z. Nous ne prendrons en considération que la masse du titane seul.

Les longueurs et angles de liaisons sont les mêmes que pour la benzoquinone-1,4 et nous considérons en plus:

 $r_{13} = r_{O-Ti} = 1,90 \text{ Å}, \quad \eta_1 = \text{angle C-O-Ti} = 180^\circ.$

Par rapport à la benzoquinone-1, 4, les nouvelles coordonnées internes qui apparaissent sont:

la coordonnée de valence O-Ti = $R_{13}^{'} = R_{13} = \varDelta r_{13}$,

la coordonnée de déformation de l'angle C-O-Ti = $R'_{14} = H_1 = \Delta \eta_1$.

La symétrie du modèle adopté est nettement abaissée puisqu'il ne subsiste, comme éléments de symétrie, que l'axe C_2^z , le plan σ^y et le plan σ^x . Le modèle appartient donc au groupe ponctuel C_{2y} .

4.3.1. Valeurs des fréquences fondamentales calculées. Du fait de la syniétrie C_{2v} du modèle benzoquinone-1,4 · TiCl₄, toutes les vibrations planes sont actives en IR.

Nous aurons donc deux fréquences carbonyle dont l'une correspondra plus précisément au carbonyle lié à l'atome de titane (coordonnée interne R_7), et l'autre, au groupe carbonyle non lié (coordonnée interne R_8).

Dans la matrice F de notre modèle, nous pouvons à nouveau faire varier la constante de force du carbonyle lié au titane, jusqu'à l'obtention de valeurs proches des fréquences expérimentales. Nous supposerons que le constante de force du groupe carbonyle non-lié reste toujours égale à $9,85 \cdot 10^5$ dyne/cm.

Nous donnons dans le tableau 11 les fréquences calculées ω (C=O) pour diverses valeurs de la constante de force $F(C=O \rightarrow)$. Pour préciser l'origine de ces fréquences nous avons également noté les contributions de la vibration carbonyle liée (\mathbb{R}_7) et non-liée (\mathbb{R}_8) à l'énergie potentielle totale pour chaque fréquence.

Constante de force $F(C=O\rightarrow)$	Fréquences carbonyle	Contribution $R(C=O) \ge 1'$	ns des variations énergie potentielle	Attributions appro- ximatives des
(10° dyne/cm)	calculees (cm ¹)	$\mathbf{K}_{7}(\%)$	R ₈ (%)	frequences carbonyle
9,0	1658	2,9	73,5	C=O «non complexé»
	1626	74,2	2,7	C=O «complexé»
8,8	1657,6	1,6	75,0	C=O «non complexé»
	1612	74,0	1,3	C=O «complexé»
8,7	1657,6	1,2	75,4	C=O «non complexé»
	1605	75,1	0,9	C=O «complexé»
5,0	1657	0	76,7	C=O «non complexé»
	1282	54,2	0,9	C=O «complexé»

Tableau 11. Variation des 2 fréquences carbonyle en fonction de la constante de force $F(C=O\rightarrow)$

D'après les contributions des énergies potentielles des 2 groupes carbonyle nous remarquons que nous pouvons classer les 2 fréquences carbonyle actives en IR. de ce modèle en une fréquence C=O «non-complexée» où domine la contribution du C=O libre, et en une fréquence C=O «complexée» où domine la contribution de la liaison R_7 participant à la formation du composé d'addition.

Le tableau 11 indique que la variation de la constante de force n'entraîne qu'un abaissement de la fréquence C=O «non complexée». De ce fait il n'est pas possible de considérer les bandes observées en IR., 1630 cm⁻¹ et 1605 cm⁻¹, comme appartenant à cette fréquence carbonyle «non complexée». Il est à noter que la constante de force $5 \cdot 10^5$ dyne/cm que nous avons utilisée dans ce modèle constitue une limite inférieure. En effet, si l'on suppose que l'action d'accepteur de TiCl₄ est suffisamment forte pour qu'il y ait formation d'une simple liaison C-O, la constante de force de cette liaison C-O devrait se situer, d'après *Wilson, Delcius & Cross* [23] de 5,0 à 5,8 \cdot 10⁵ dyne/cm.

La constante de force $F(C=O \rightarrow) = 8.7 \cdot 10^5$ dyne/cm (soit $\Delta F(C=O) = -1.15 \cdot 10^5$ dyne/cm) paraît être la seule vraisemblable pour ce modèle et nous l'avons utilisée pour calculer les fréquences et les contributions V_{kn} (tableau 12).

Les fréquences obtenues pour ce modèle à l'aide des coordonnées internes et des coordonnées de symétrie sont comparées dans le tableau 13 avec celles de la benzoquinone-1,4.

4
<u>S</u>
E.
÷
benzoquinone-1
ê
à
ŝ
fréquence
chaque
Anod
normée à l'unité,
énergie potentielle.
V _{kn} de l'
Contributions
Tableau 12.

√5 √ 5	1,0031	0, 3983	1,0023	1,0023	0,9954	1,0011	0, 9998	2600 0	0,9996	t 666 0	7000 T	0,9996	410449	4,0449	1,0375	4,0145	0446	024420	6661 0	8661.6	4666 0	6, 1497	£666'0	0,9994	0,9999	6, 9,114	\$5, 9929
0	0,0182	0,9570	0,0243	49100	9,0548	0.023	1	1	1	1	1	1	5900%	0.2759	61670	07460	6660%	4546	١	1	1	1	1	1	1	1	9606
c	0,0288	-0,002	0,0276	41200	0000	94800	1	1	1	1	1	1	908410	0,1866	86000	Open la	9,42.4	42524	ł	1	1	1	1	1	1	1	8666 6
c	0,0 :62	1	205.00	0,0433	9,0075	6,0243	1	1	1	1	1	1	19100	5000	0,1522	94322	4442 0	0,0733	ļ	1	1		1	1	!	1	2666 17
121	0,0009	4700%	<i>a</i> ;0038	<i>0,0038</i>	0,0024	6000'0	1	1	1	1	1	1	1	0,0039	6,003	1	0,000,5	65000	06420	0,0116	2000,0	10000	10000	2000	1	0,6160	3649.0
270	0,0157	0,0332	I	1	0,0392	d,0157	42540	2,0126	1	1	1	1	0,1683	0,0321	4600%	28400	4600'0	0,0321	l	1	2000/0	9,002	0,002	9003	±61-40	1	1,000
445	90174	9040	£050'a	c'oso'a	atta'a	42400	1	1	1	10001	0,0001	1	1	0,0012	17100		+2+0%	2100'0	0,0390	0'6690	80000	8000'0	0,0008	80003	1	24042	0,9996
542	58100	9,0389	2400'0	0,0042	61506	90185	49000	app	1	0,0002	1000	1	45400	Q0103	16900	87450	0,0691	0,0103		I	0,00/3	0,0010	0100%	0,00/3	9.2771		+666'0
Ct+S	+65+'0	6,0010	905300	90620	6,0010	1651'a	1	1	1	2,002,0	4 0002	1	I	50500	435 <i>e</i> 'a	1	42500	20203	0,2590	0,0726	0,0020	6700%	6,00,5	07000	1	50.00	4119,0
633	0,0023	6,0007	\$95.04	0,0323	taar'o	9023	1	1	0,0006	9,0003	0°003	0,000	I	0,4435	0,1076		0,4076	0,1435	0,1328	0,0786	otora	44000	4400%	04:00		0,1470	\$646'0
747	HC0'0	0,0052	\$2036	0,2036	25000	1600'0	0400	4280%	0,00+2	0,0001	6,0001	0,0012	16120	0,0662	11-00'0	0,0320	40044	2,062	1	I	¢500'0	5900%	0,00KS	£500%	4490%	1	c, 9996
302	0,2083	0,0342	00500	00200	0,0342	0,2083	0,0442	2000/0	6,0003	0,0013	0,0013	5,0003	0,0293	1400'0	662010	0,0719	6670'0	944	ļ	1	820010	15000	6,0037	\$7000	0,1906	1	o, 9777
151	68000	1	2690'0	0,0672	1	68900	0,0010	6 <i>000</i> 0	0,0014	0,0013	0,03f3	41000	14000-	0,4245	0,1115	-0,0039	0,4245	0,4245	1	1	2090'0	9090'0	2090'0	0,0603	2,0005	1	\$46'0
1068	15000	2041.0	0, 1073	52006	0,1402	+5000	1	1	0,005	900010	9000'0	2000,5	1	14100	1+200	1	41-20-0	15100	0770%	49:0%	0,1453	0,1343	0,4343	0,44.53	J	e, a035	5446 0
1120	0,0067	106010	0,000	4300.0	1060'0	0,0067	0,0022	0,0023	40004	10000	100010	1 000'0	360 0' 0	e, 0030	92000	0900%	1000	0,00,0	1	·	64646	92820	0,1876	6+6+0	1000	t	96.66
1226	0,0133	1	10,0331	10,0331	1	0,0139	1	1	0,0001	70000	70000	100010	1	48000	3047		t Hero	48000	0,0364	68%00	694763	40130	40420	0,1763	1	2700'0	:666,0
1313	24410	1,00/2	0,1746	2444	0,0012	0442	1	1	5000'0	6,000'0	60000	0,00,0	1	GINOTO	0,0206	!	0,0206	60400	0,0759	9,0692	0,0496	0,0458	0,0458	96400	1	atta	e, 9997
1345	0,0346	1	0,0340	04800		0,0346	0,0256	0,0250	10001	±0005	±000'0	±000'0	10000-	24300	0,0248	scool-	8420%	t420'0	l	1	4440	0,1785	58+H	t++++'a	9,0052	1	1699, p
1402	0,1346		0,0946	94600		0,1346		1	0,0025	070010	070010	0,0025	1	90743	0,0634]	4596%	847 Cr/0	0,0379	51:00	0,0422	4250'0	425010	0,0422		4800%	8666'0
1595	16100	1820	46100	161010	9281	16100		1	100'0	0,0012	0,0012	1000	1	120000	2,800/0	1	18080	6,00,85	0,0015	9,0016	20200	0,0792	26200	26200	1		±16660
1605	1500	1000	1902	200 0	100006	1500	1sto	1600'0 2	10001	1	1	10001	09000	10,005	toanto-	9400 2	-9000	1 0,0050	1	}	naop-1	04000	0000	0000-0	2040%		6,999
1657	1006	26402	167000	167005	6400	9004	17100 5	CSED 1	1000	9000	9,000	600000	37000	0000-1	1,0021	40334	4,0022	-4400	1	1	\$ 9.07.32	11.001	100%	61013	040040		9,699
1701	570'0 1	92335	10,043	2,40,0	10233	19025	4004-	0,0415	110000	10000	1 4 001	80,004	0,031	THO'D	4100	gioS43	6440	0,011		1	gese	0,0563	0,056	0,0500	0001	1	£666'0 (
3056	0,0004	0,0031	5 9,000.	100010	a, 003	9,000			5 0,246	54476 5	544709	2426	1	00000	5,000,0		\$ 0,0005	5/00/2	0,000	Dicerto	1000/0	1000%	10000	1000'0	1		1,000
1 3059	5000'0 9	[2000	5 0,0005		\$ 0,000			59247	4770	1470 1	59,247	0,0002	3 0,0015	21-0010 2	20002	3 0,00-1	0,0012	1		1		1	1			1666'0
3063	3 0,000	1	\$ 0,000	3 0,000	و ا	3 0,000			9 0,247.	4942'0 8	8 0,2461	543'0 6	1	3 0,002.	3 0,002	- Dr	3 0,002	3 0,0023	BJUENT	0,av 2			 	\ \ \	1		\$666.0 5
3061	0000	5000	000'0	000'0	000	0000			0,246	0,246	0,246	0,246	0000	0000	0000	0,000	0,000,	2000		1	10000	10000	000'0	6,000			n 0,9994
J.H.		۴N	r.	~7		20	12	α, ⁰³	r.	R ₁₀	1 ² T	R ^R L		02	c ^m	04	ໄດ້	റ്	÷6-"	÷.	÷	÷	ት	ھ	"t	я	

Nous remarquons pour les fréquences suivantes du modèle benzoquinone-1,4 · TiCl₄ diverses variations par rapport au spectre de la quinone:

1701 cm^{-1} . Le caractère de double liaison C=C a augmenté de 7% par rapport à celui des doubles liaisons de la benzoquinone-1,4.

 802 cm^{-1} . La contribution des liaisons C-C proches du C=O «complexé» est supérieure (41%) à celle des autres liaisons C-C (10%); ces liaisons représentaient 78% de l'énergie potentielle dans la fréquence correspondante de la benzoquinone-1,4. La contribution des liaisons O-Ti et C=O (lié au titane) atteint au total 24%.

747 cm⁻¹. La contribution des liaisons C-C proches du C=O «non-complexé» est de 40% (24% pour celle des 4 liaisons C-C dans la benzoquinone-1,4).

BQ-1,4 gr. ponctuel D ₂ h	BQ-1, $4 \cdot 2$ TiCl ₄ gr. ponctuel D_{2h}	Représentation irreductible (D_{2h})	BQ-1,4 \cdot TiCl ₄ gr. ponctuel C_{2v}	Représenta- tion irréduc- tible (C_{2v})	Attribution approxi- mative
3061	3061	Ag	3061	A ₁	v _{CH}
3061	3061	B_{3g}	3061	B_2	$\nu_{\rm CH}$
3059	3059	B _{1u}	3059	A ₁	v_{CH}
3058	3059	B_{2u}	3059	B ₂	$v_{\rm CH}$
1705	1699	A_{g}	1701	A ₁	$v_{C=C}$
1660	1620	$A_{\mathbf{g}}$	1657	A ₁	<i>ν</i> _{C=0}
1653	1605	B ₁ u	1605	A ₁	$v_{\rm C=0}$
1595	1595	B_{2u}	1595	\mathbf{B}_2	$\psi \mathbf{C} = \mathbf{C}$
1397	1406	B_{3g}	1402	B_2	<i>v</i> _{C-C}
1344	1347	B ₁ u	1345	A ₁	β_{CH}
1307	1328	B _{2u}	1318	B_2	$\nu_{\rm C-C}$
1222	1230	B_{3g}	1226	B_2	$\beta_{\mathbf{CH}}$
1120	1121	A_{g}	1120	Λ_1	β_{CH}
1066	1069	B _{2u}	1068	${ m B}_2$	β_{CH}
951	951	B ₁ u	951	$A_{\mathbf{I}}$	déformation du squelette
77 0	803	A_{g}	802	A ₁	$\nu_{\rm C-C}$
707	800	B_{1u}	747	A ₁	déformation du squelette
603	656	B_{3g}	633	B_2	déformation du squelette
517	553	B_{ag}	549	B_2	$\beta_{\rm C=0}$
444	618	A_{g}	542	A_1	déformation du squelette
402	519	B ₂ u	445	B_2	$\beta c = o$
_	367	B_{1u}	270	Λ_1	ν _O -Ti
-	208	Λ_{g}	-		$v_{\rm O-Ti}$
	159	B_{ag}	121	B_2	$\beta_{C=O-Ti}$
-	80	B_{2u}	~		$\beta_{C=O-Ti}$

Tableau 13. Comparaison entre les nombres d'ondes calculés pour les modèles benzoquinone-1,4,
benzoquinone-1,4 · 2 TiCl₄ et benzoquinone-1,4 · TiCl₄

633 cm⁻¹. On observe une forte diminution de la contribution des déformations des angles β (50% au lieu de 65%) et des vibrations des liaisons C-C (6% au lieu de 22% dans la benzoquinone-1,4). La contribution des vibrations de déformation C=O a en revanche fortement augmenté (26% au lieu de 11%) alors qu'apparaît celle de l'angle C=O-Ti (15%).

549 cm⁻¹. La contribution des mouvements de déformation des C=O a fortement diminué (32% au lieu de 75% dans la benzoquinone-1,4) au bénéfice des coordonnées de valence C-C (40% dont 28% pour les liaisons C-C proches du C=O lié au titane, au lieu de 22%). La participation prépondérante de la coordonnée de déformation ϕ'_1 nous fait décrire cette fréquence comme due essentiellement au mouvement de déformation du C=O «complexé».

 542 cm^{-1} . On constate pour cette fréquence une diminution de la participation des vibrateurs du cycle alors que la vibration de valence O-Ti intervient pour 28% dans l'énergie potentielle.

445 cm⁻¹. La très forte contribution (67%) de la coordonnée de déformation C=O non liée au titane nous permet de décrire cette fréquence comme étant due au mouvement de déformation dans le plan du C=O «non-complexé».

Deux nouvelles fréquences apparaissent dans ce modèle, l'une, 270 cm⁻¹, est attribuée à la vibration de valence O-Ti; l'autre, 121 cm⁻¹, est due essentiellement au mouvement de déformation de l'angle C=O-Ti dans le plan de la molécule.

5. Comparaison du spectre IR. du composé d'addition avec les fréquences calculées pour les deux modèles. – 5.1. Modèle benzoquinone-1,4 · A. Le modèle adopté pour la quinone rend compte de manière satisfaisante des vibrations de valence des groupes carbonyle. En fait, la fréquence active en IR. calculée (1653 cm⁻¹) correspond au doublet 1662–1653 dû à la résonance de *Fermi*, et la vibration active dans l'effet *Raman*, calculée à 1660 cm⁻¹, a été signalée à 1667 cm⁻¹.

Fréquences expérimen- tales Raman de la benzoquinone-1, 4 (cm ⁻¹)	Déplacement calculé à l'aide du modèle (cm ⁻¹)	Fréquences nouvelles apparaissant, dans le spectre IR. du complexe, dans la région indiquée
1684 Ag	- 6	vers 1680 cm ⁻¹ : aucune
1667 Ag	- 3	vers 1665 cm ⁻¹ : aucune
1392 B ₃₈	+ 5	vers 1400 cm ⁻¹ : aucune
1211 B _{ag}	+4	vers 1210–1220 cm ⁻¹ : aucune
1147 Ag	0	vers 1150 cm ⁻¹ : aucune
770 Ag	+ 32	vers 800 cm ⁻¹ : aucune. La bande 776 cm ⁻¹ peut être plus vraisemblablement attribuée à une vibration de déformation du squelette
600 В _з	+ 30	$vers 620-630 \text{ cm}^{-1}$: aucune
476 B ₃₈	+ 32	vers $500 \mathrm{cm}^{-1}$; aucune
443 Ag	+ 98	vers 500–540 cm ⁻¹ : aucune

Tableau 14. Fréquences nouvelles actives en IR. devant apparaître d'après le modèle benzoquinone-1, 4 · TiCl₄ Comparaison avec le spectre du complexe

Dans le composé d'addition, on pourrait supposer que les deux fréquences carbonyle expérimentales correspondent aux nombres d'ondes 1630 et 1605 cm⁻¹. Si l'on se réfère cependant au modèle benzoquinone-1,4 · A de symétrie C_{2v} , l'une des fréquences resterait pratiquement inchangée, vers 1660 cm⁻¹, tandis que l'autre devrait être assez fortement perturbée. La fréquence expérimentale 1630 semble dans ce cas trop déplacée pour correspondre à la fréquence C=O non-complexée.

Nous devrions de plus observer dans le spectre IR. du composé d'addition l'apparition de vibrations situées dans le plan de la molécule (représentations A_1 et B_1 de C_{2v}) qui étaient actives en effet *Raman* seulement dans la quinone. En nous basant sur les spectres *Raman* (voir tableau 8) et sur les résultats des calculs (tableau 13), il est possible de situer au moins approximativement ces vibrations.

Parmi les mouvements hors du plan de la benzoquinone-1,4 actives en Raman seule la fréquence 745 cm⁻¹ (B_{1g}) devrait correspondre à une vibration inactive en IR. dans le groupe ponctuel C_{2v} (soit la représentation A₂). A l'examen du spectre du complexe, nous ne pensons pas qu'une des bandes puisse lui être attribuée.

Les enseignements que nous pouvons tirer de ce modèle ne paraissent donc pas correspondre aux données du spectre IR. du modèle de composé d'addition adopté.

5.2. Modèle benzoquinone-1, $4 \cdot 2A$. Une seule fréquence carbonyle active (B_{1u}) apparaît en IR., par suite du groupe ponctuel adopté. D'après la discussion du paragraphe 4.2.1, nous lui attribuons le nombre d'ondes 1630 cm⁻¹, ce que confirme l'intensité de cette bande, plus forte que celle de la bande 1605 cm⁻¹.

Pour les vibrations fondamentales calculées d'après ce modèle nous pouvons reprendre les résultats du tableau 13 et ne conserver que les vibrations actives en IR. (représentation B_{1u} et B_{2u}). La différence $\Delta \omega$ entre la fréquence calculée d'après le modèle de benzoquinone-1,4 et la fréquence correspondante du modèle benzoquinone-1,4 · 2 TiCl₄ donne le sens (augmentation ou abaissement de la fréquence) et l'ordre de grandeur du déplacement de cette fréquence, que l'on comparera avec les fréquences observées:

Calcu	lé pour le mod	èle		Fréquences observées						
benzo	quinone-1,4	benzoqui- none-1,4·2Ti	$\Delta \omega$ Cl ₄	benzoqui- none-1,4	benzoqui- none-1,4•TiCl ₄	Δω				
3059	B _{2u}	3059	0	3063	3060	- 3				
3059	B _{2u}	3059	0	3063	3060	- 3				
1653	B _{1u}	1605	- 48	$1662 \\ 1653 R.F.$	1605	57) 48				
1595	B _{2u}	1595	0	1595	1587	- 8				
1344	Biu	1347	+ 3	1367	1360	- 7				
1307	B _{2u}	1328	+ 21	$1313 \\ 1307 \}$	1332	+19 +25				
1066	B_{2u}	1069	+ 3	1084) 1072)	1092	+ 8) + 20				
951	B _{1u}	951	0	942	939	- 3				
707	B _{1u}	800	+ 93	741	776	+ 35				
402	B_{2u}	519	+117	412	474	+62				
-	B ₁ u	367			392	-				

Tableau 15. Différences $\Delta \omega$ entre les fréquences calculées et observées

Ce modèle nous permet de proposer une attribution des fréquences du spectre IR. du complexe (tableau 16).

L'épaulement 1561 cm⁻¹ et la bande de faible intensité 1260 cm⁻¹ ne peuvent correspondre à aucune fréquence fondamentale (dans et hors du plan). Nous les attribuerons à des bandes de combinaison sans toutefois pouvoir préciser, le spectre *Raman* du complexe n'ayant pas été enregistré.

Le modèle benzoquinone-1, $4 \cdot 2 \operatorname{TiCl}_4$ permet donc de donner une attribution à la majorité des bandes qui apparaissent dans le spectre IR. du complexe. Seule l'origine de la bande située à 1630 cm⁻¹ ne peut être expliquée à l'aide de ce modèle.

Pour les raisons exposées au début du paragraphe 3.3, nous n'envisageons pas une modification de ce modèle (C_{2v}) pour laquelle 1630 cm⁻¹ serait la deuxième fréquence carbonyle perturbée devenant également active en IR. (A₁).

Fréquences expérimentales observées dans le complexe	Représentation irréductible	Attribution
(cm ⁻¹)		
3060	B_{10} et B_{20}	vibration de valence des C—H
1630		_
1605	B_{1u}	vibration de valence C=O
1587	B_{90}	vibration de valence $C = C$
1561	_	bande de combinaison
1360	B _{1u}	déformation plane des CH
1332	B_{2u}	vibration de valence CC
1260	-	bande de combinaison
1092	B_{2u}	déformation plance des C—H
939	$\mathbf{B}_{1\mathbf{u}}$	déformation du squelette
878	B_{3u}	déformation des CH hors du plan
776	$\tilde{B_{1u}}$	déformation du squelette
474	$\mathbf{B}_{2\mathbf{u}}$	déformation plane des C=O
392	B ₁ u	vibration de valence O-Ti

Tableau 16. Attributions des fréquences expérimentales à partir du modèle benzoquinone- $1, 4 \cdot 2 \operatorname{TiCl}_4$

Plusieurs hypothèses peuvent être avancées pour expliquer l'apparition de cette bande:

1) Le spectre IR. de la benzoquinone-1,4 solide (figure 1) présente un épaulement à 1634 cm⁻¹, qui se retrouve dans celui de la quinone en solution dans CCl_4 . Charney & Becker [12] attribuent cette bande à une combinaison:

$$745(B_{1g}) + 892(B_{3u}) = 1637(B_{2u})$$
 (état solide, groupe D_{2h}).

Le spectre IR. du complexe indique que la fréquence 892 cm^{-1} ($\gamma_{\text{C}-\text{H}}$) de la benzoquinone-1,4 est abaissée de 14 cm⁻¹, mais le spectre *Raman* n'ayant pas été enregistré, nous ne pouvons situer la combinaison correspondante dans le composé d'addition. Il est cependant possible que cette combinaison subsiste et puisse être attribuée à la bande 1630 cm⁻¹, de forte intensité, du complexe.

2) Une bande de combinaison ou un harmonique pourrait entrer en résonance avec la fréquence carbonyle perturbée (B_{1u}) . Cependant, le spectre IR. indique qu'aucune fondamentale du type B_{1u} ne pourrait avoir un harmonique vers 1600-1630 cm⁻¹,

et les bandes de combinaison qui peuvent éventuellement être formées ne paraissent pas appartenir à cette représentation.

3) L'enregistrement des spectres IR. a été effectué sur des solides. Dans un réseau cristallin contenant deux ou plusieurs molécules dans la maille élémentaire, on ne peut négliger les interactions (ou couplages) qui ont lieu entre les vibrations de ces différentes molécules voisines. Nous avons un exemple de ces interactions dans la benzoquinone-1,4, où les doublets 1313/1307 cm⁻¹ (vibration de valence C-C) et 1084/1072 cm⁻¹ (déformation plane des C-H) ont été attribués par *Davies & Prichard* [11] à un dédoublement des fondamentales dû au fait que le cristal contient 2 molécules de benzoquinone-1,4 par maille élémentaire. Ce pourrait être également le cas pour les bandes 1630 et 1605 cm⁻¹, où un couplage entre les fondamentales C=O de 2 molécules conduirait au doublet constaté.

4) Au cours de nos calculs nous avons considéré une molécule isolée du complexe, c'est-à-dire que l'énergie potentielle de la molécule était entièrement exprimée en termes de coordonnées internes et la symétrie de cette fonction potentielle était celle de la molécule.

Cependant, dans le complexe à l'état solide les règles de sélection ne sont pas identiques à celles appliquables à la molécule isolée; dans un réseau cristallin, on peut étudier les fréquences importantes du spectre en considérant la symétrie de la maille élémentaire [27]. Pour un point (site) de la maille élémentaire situé sur un élément de symétrie, il y a invariance pour diverses opérations de symétrie et le groupe de site ne peut être qu'un sous-groupe du groupe spatial. D'autre part, le centre de gravité d'une molécule symétrique, invariant par rapport aux éléments de symétrie du groupe ponctuel, est normalement sur un site, ce qui implique que le groupe de site peut également être un sous-groupe du groupe ponctuel de la molécule. De cette manière, l'énergie potentielle totale d'un cristal a la symétrie du site considéré, qui peut être inférieure à celle du groupe spatial et à celle du groupe ponctuel de la molécule.

La symétrie $(D_{2\hbar})$ de la molécule isolée de complexe peut ainsi être abaissée dans le cristal (le groupe ponctuel C_{2v} pourrait dans ce cas être envisagé). Ne connaissant pas le groupe spatial du réseau cristallin du complexe nous ne pouvons calculer la symétrie du site.

Si nous considérons la fréquence 1630 cm⁻¹ observée dans le complexe comme la fréquence carbonyle perturbée correspondant à la fréquence calculée 1620 cm⁻¹ du modèle benzoquinone-1, $4 \cdot 2 \operatorname{TiCl}_4$ (groupe $D_{2\hbar}$, représentation A_g), nous constatons que les abaissements calculés et observés de cette fréquence C=O sont très proches:

	benzoquinone-1,4	benzoquinone-1,4·2TiCl ₄	$\Delta\omega$ (C = O)
Représentation Ag calculé	1660	1620	- 40
observé	1665	1630	- 35

Dans l'hypothèse d'une symétrie C_{2v} du complexe à l'état solide cette fréquence C=O pourrait appartenir à la représentation A_1 et devenir active en infrarouge; le modèle benzoquinone-1, $4 \cdot 2 \operatorname{TiCl}_4$ rendrait alors parfaitement compte de la présence de la bande observée 1630 cm⁻¹ qui serait donc attribuée à la vibration carbonyle théoriquement interdite en IR. dans la molécule isolée. 5.3. Conclusions sur le composé d'addition de la benzoquinone-1,4 et de $TiCl_4$. La comparaison entre les deux modèles BQ-1,4 · A et BQ-1,4 · 2A et leurs spectres IR. nous incite à conclure que le modèle benzoquinone-1,4 · 2TiCl₄ est le plus vraisemblable.

Comme les dosages prouvent par contre la stoechiométrie 1:1 du complexe, nous devons admettre, pour concilier ces deux résultats, que le complexe se trouve sous une forme polymérisée (benzoquinone-1, $4 \cdot \text{TiCl}_4$)_n dont la structure pourrait être en chaîne, tel que:

Cette forme polymère expliquerait en outre l'insolubilité du complexe dans les solvants polaires utilisés et impliquerait une coordination octaédrique (déformée) très fréquente.

Fréquences observées dans le spectre IR. du complexe (cm ⁻¹)	Attributions proposées							
1810	bande de combinaison							
1796	bande de combinaison							
1740	bande de combinaison							
1696	bande de combinaison							
1634								
1614	vibration de valence C=O							
1592	vibration de valence C=C							
1572	bande de combinaison							
1547	bande de combinaison							
1476	vibration de valence C—C de la molécule de benzène associée au complexe							
1358	déformation plane des C-H							
1336	vibration de valence C—C							
1319	bande de combinaison							
1260	bande de combinaison							
1234	déformation plane des CH							
1204	bande de combinaison							
1148	déformation plane des C—H							
1085	déformation plane des CH							
1032	vibration de valence CC de la molécule de benzène associée au complexe							
941	déformation du squelette							
872 866	déformation des C—H hors du plan							
773 ´	déformation du squelette							
700	non définie							
671	déformation hors du plan des C—H de la molécule de benzène associée au complexe							
523	déformation des C=O hors du plan							
497	déformation plane des C=O							
437	déformation plane des C=O							
386	vibration de valence O—Ti							

Tableau 17. Attributions des fréquences expérimentales du complexe benzoquinone-1, 4 · TiCl4 · benzène

6. Complexe benzoquinone-1,4 · TiCl₄ · benzène. – Nous avons attribué à la fréquence carbonyle la bande 1614 cm⁻¹, qui apparaît plus intense dans le spectre IR. de ce complexe que dans celui du composé benzoquinone-1,4 · TiCl₄. Le déplacement de la fréquence C=O →, moins important que dans le complexe précédent, indique que la liaison carbonyle est moins perturbée. La symétrie du complexe, si l'on se base sur le nombre de bandes qui apparaissent dans le spectre IR., est plus basse que celle du composé benzoquinone-1,4 · TiCl₄, mais nous ne pouvons définir son groupe ponctuel. Nous avons cependant tenté de préciser l'origine des bandes objervées dans le spectre IR. du complexe, en tenant compte des spectres infrarouges et *Raman* de la benzoquinone-1,4 (tableau 8) et en nous référant au modèle benzoquinone-1,4 · TiCl₄ (tableau 13) susceptible de donner d'utiles indications sur les déplacements des fréquences des vibrations fondamentales. Le tableau 17 indique les attributions que nous proposons.

Les bandes de faible intensité apparaissant à 1810, 1796, 1740, 1696, 1572, 1547, 1319, 1260 et 1204 cm⁻¹ dans le spectre IR. du complexe ne peuvent correspondre à aucune vibration fondamentale de la benzoquinone-1,4 et ont été considérées comme des bandes de combinaison. Le spectre *Raman* du complexe n'ayant pu être enregistré du fait de l'insolubilité de ce composé, nous ne sommes pas en mesure de proposer les combinaisons correspondant à ces bandes.

Les hypothèses formulées au paragraphe 5.2 peuvent également être avancées pour expliquer l'origine de la bande de forte intensité 1634 cm⁻¹ de ce complexe.

Les différences constatées entre le spectre IR. des complexes benzoquinone-1,4 \cdot TiCl₄ et benzoquinone-1,4 \cdot TiCl₄ \cdot benzène indiquent bien qu'il ne s'agit pas de deux composés identiques. Nous devons en effet tenir compte de la remarque faite par *Soumarokova* et coll. [7] au sujet du complexe benzoquinone-1,4 \cdot SnCl₄ \cdot benzène préparé par *Meyer* [8]. Ces auteurs ayant à nouveau isolé, à partir d'une solution benzénique, le complexe entre SnCl₄ et la benzoquinone-1,4, ont trouvé la structure 1:1, et ils supposent que *Meyer*, lors du séchage, n'est pas parvenu à éliminer complètement le solvant. Si tel était le cas dans notre complexe, son spectre IR. devrait résulter de la juxtaposition de celui du benzène et de benzoquinone-1,4 \cdot TiCl₄, et la différence entre les abaissements observés de la fréquence carbonyle dans nos deux composés d'addition ne pourrait être expliquée. Une confirmation de l'existence d'un complexe différent est en outre donnée par l'état physique de ces deux corps.

BIBLIOGRAPHIE

- [1] XXXIII: F. Filippini & B. P. Susz, Helv. 54, 1156 (1971).
- B. P. Susz & P. Chalandon, Helv. 41, 697 et 1332 (1958); G. P. Rossetti & B. P. Susz, Helv. 47, 289, 299 et 2053 (1964); J.Goehring, G. P. Rossetti & B. P. Susz, Helv. 46, 2639 (1963); D. Cassimatis & B. P. Susz, Helv. 43, 852 (1960); 44, 395 (1961); J. C. Jaccard & B. P. Susz, Helv. 50, 97 (1967); B. P. Susz, Bull. Soc. chim. France 1965, 2671.
- [3] D. Cassimatis, thèse N° 1331, Université de Genève, 1961.
- [4] B. Petitpierre & B. P. Susz, Helv. 50, 392 (1967).
- [5] B. P. Susz & R. Weber, Helv. 50, 2226 (1967); 53, 2085 (1970).
- [6] F. Klages, H. Träger & E. Mühlbauer, Chem. Ber. 92, 1819 (1959).
- [7] T.N. Soumarokova, Yu. Nevskaya & E. Yarmukhamedova, Zhur. Obshchei Khim. 30, 1705 (1960).
- [8] K. H. Meyer, Ber. deutsch. chem. Ges. 41, 2568 (1908).
- [9] E. P. Kohler, American Chemical Journal, 27, No 4, 241 (1902).

- [10] T. Anno & A. Sadô, Bull. chem. Soc. Japan 31, 734 (1958).
- [11] M. Davies & F. E. Prichard, Trans. Faraday Soc. 59, 1248 (1963).
- [12] E. Charney & E. D. Becker, J. chem. Physics 42, 910 (1965).
- [13] H. Stammreich & T. T. Sans, J. chem. Physics 42, 920 (1965).
- [14] T. Anno, J. chem. Physics 42, 923 (1965).
- [15] J. Deschamps, M.L. Lafore, J. Etchepare & M. Chaillet, J. Chim. physique Physicochim. biol. 67, 722 (1970).
- [16] F. Stenman, Commentationes physico-mathematicae 34, 10, 79 (1969).
- [17] M.L. Josien & J. Dechamps, J. Chim. physique 52, 213 (1955).
- [18] H. Lee & J. K. Wilmshurst, Austral. J. Chemistry 19, 1529 (1966).
- [19] D. J. Cosgrove, D.G. H. Daniels, J. K. Whitehead & J. D. S. Goulden, J. chem. Soc. 1952, 4821.
- [20] J. F. Bagli, J. physic. Chemistry 65, 1052 (1961).
- [21] T.L. Brown, Spectrochim. Acta 18, 1065 (1962).
- [22] E. D. Becker, H.Ziffer & E. Charney, Spectrochim. Acta 19, 1871 (1963); H.Ziffer, E. Charney & E. D. Becker, J. chem. Physics 42, 914 (1965).
- [23] E. B. Wilson Jr., J.C. Decius & P.C. Cross, "Molcular Vibrations. The Theory of Infrared and Raman Vibration Spectra", McGraw-Hill Book Co. Inc., New York 1955.
- [24] J. Trotter, Acta cryst. 13, 86 (1960).
- [25] R. Mulliken, J. chem. Physics, 23, 1997 (1955).
- [26] S. Califano & B. Crawford, Z. Elektrochemie 64, 571 (1960).
- [27] R. S. Halford, J. chem. Physics 14, 8 (1946).

146. The Competition between Spin Orbit Coupling and Conjugation in Alkyl Halides and its Repercussion on their Photoelectron Spectra¹)

by F. Brogli and E. Heilbronner

Physikalisch-Chemisches Institut der Universität Basel

(17. V. 71)

Summary. A crude molecular orbital model for alkyl halides is proposed, which provides a semi-quantitative rationalization for the following experimental observations: (a) In the photoelectron spectra of alkyl halides RX (symmetry C_s) the lone pair band is split into two components, separated by a gap Δ . This gap is equal to the splitting associated with spin-orbit coupling in systems where X lies on a symmetry axis of order $n \ge 3$. (b) The vibrational pattern of the two components indicates substantial conjugation between R and X. (c) Notwithstanding (b), the gap Δ is largely independent of the type of alkyl group R. (d) For strongly conjugating alkyl groups (e.g. R = cyclopropyl) the first component of the lone pair band (*i.e.* the one at lower ionization potential) broadens while the one at higher potential sharpens up.

Consider a halide molecule RX (X = halogen atom) in which the bond R-X coincides with an n-fold axis of the system ($n \ge 3$). Photoejection

$$RX + h\nu \longrightarrow RX^+ + e \tag{1}$$

of an electron e from a π -type "lone pair" orbital of X yields the radical cation RX⁺ in a doublet spin state. Because of spin-orbit coupling this ${}^{2}\Pi$ term is split into two levels, ${}^{2}\Pi_{3/2}$ and ${}^{2}\Pi_{1/2}$, which differ in energy by

$$\varepsilon(^{2}\Pi_{3|2}) - \varepsilon(^{2}\Pi_{1|2}) = -\zeta(\mathbf{X}), \qquad (2)$$

¹) Part 25 of 'Applications of Photoelectron Spectroscopy'. Part 24: [1].